Solution 6

- Identify the boundary points, interior points, interior and closure of the following sets in R:
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \dots\}$.

Solution.

- (a) Boundary points: 1, 2, 5, 10. Interior points: (1, 2), (2, 5). Interior: $(1, 2) \cup (2, 5)$. Closure: $[1, 5] \cup \{10\}$.
- (b) Boundary points: All points in [0, 1]. No interior point. Interior: the empty set ϕ . Closure: [0, 1]
- (c) Boundary points: $\{1/k : k \ge 1\}, 0$. Interior points: all points in this set. Interior: This set (because it is an open set). Closure: [0, 1].
- (d) Boundary points $1, 2, 3, \cdots$. No interior points. Interior: ϕ . Closure: the set itself (it is a closed set).
- 2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y) : 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$

Solution.

- (a) Boundary points: the geometric boundary of the rectangle and the segment $\{0\} \times [3,5]$. Interior points: all points inside the rectangle. Interior $(0,1) \times (3,5)$. Closure $[0,1] \times [3,5] \cup \{0\} \times [3,5]$.
- (b) Boundary points: all (x, y) satisfying $x^2 + y^2 = 1$ or $x^2 + y^2 = 9$. Interior points: all points satisfying $1 < x^2 + y^2 < 9$. Interior $\{(x, y) : 1 < x^2 + y^2 < 9\}$. Closure $\{(x, y) : 1 \le x^2 + y^2 \le 9\}$.
- (c) Boundary points: $(0,0), (1,0), (1/2), (1/3,0), \cdots$. Interior points: all points except boundary points. Interior: $\mathbb{R}^2 \setminus \{(0,0), (1,0), (1/2), (1/3,0), \cdots\}$. Closure: \mathbb{R}^2 .
- 3. Describe the closure and interior of the following sets in C[0, 1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$

Solution.

- (a) Closure: $\{f \in C[0,1]: f(x) \ge -1, \forall x \in [0,1]\}$. Interior: The set itself. It is an open set.
- (b) Closure: The set itself. It is a closed set. Interior: ϕ . Let f satisfy f(0) = f(1). For every $\varepsilon > 0$, it is clear we can find some $g \in C[0, 1]$ satisfying $||g - f||_{\infty} < \varepsilon$ but $g(0) \neq g(1)$. It shows that every metric ball $B_{\varepsilon}(f)$ must contain some functions lying outside this set.

4. Let A and B be subsets of (X, d). Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Does $\overline{A \cap B} = \overline{A} \cap \overline{B}$?

Solution. We have $\overline{A} \subset \overline{B}$ whenever $A \subset B$ right from definition. So $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}$, $B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_j \to 0$ such that $B_{\varepsilon_j}(x)$ has nonempty intersection with A or B, so $x \in \overline{A} \cup \overline{B}$.

On the other hand, $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is not always true. For instance, consider intervals (a, b) and (b, c). We have $\overline{(a, b)} \cap \overline{(b, c)} = \{b\}$ but $\overline{(a, b)} \cap \overline{(b, c)} = \phi$. Or you take A to be the set of all rationals and B all irrationals. Then $\overline{A \cap B} = \overline{\phi} = \phi$ but $\overline{A} \cap \overline{B} = \mathbb{R}$!

5. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.

Solution. Let $A = \{x \in X : d(x, E) = 0\}$. Claim that A is closed. Let $x_n \to x$ where $x_n \in A$. Recalling that $x \mapsto d(x, E)$ is continuous, so $d(x, E) = \lim_{n \to \infty} d(x_n, E) = 0$, that is, $x \in A$. We conclude that A is a closed set. As it clearly contains E, so $\overline{E} \subset A$ since the closure of E is the smallest closed set containing E. On the other hand, if $x \in A$, then $B_{1/n}(x) \cap E \neq \phi$. Picking $x_n \in B_{1/n}(x) \cap E$, we have $\{x_n\} \subset E, x_n \to x$, so $x \in \overline{E}$.

6. Let $E \subset (X, d)$. Show that E° is the largest open set contained in E in the sense that E° is open and $G \subset E^{\circ}$ whenever $G \subset E$ is open.

Solution. Let $G \subset E$ is open. For $x \in G$, there is some $B_{\varepsilon}(x) \subset G$. But that means $B_{\varepsilon}(x) \subset E$ too, so x is an interior point of E, that is, $x \in E^{\circ}$. We have shown $G \subset E^{\circ}$. Next, we claim that E° is open. For, if x is an interior point, there is some $B_r(x) \subset E$. But then every point $y \in B_r(x)$ is also an interior point as $B_{\rho}(y) \subset B_r(x) \subset E$ where $\rho = r - d(x, y)$.

7. Let *E* be a subset of (X, d). Prove the relation $E^{\circ} = X \setminus \left(\overline{X \setminus E}\right)$.

Solution. Let the right hand side be A. For $x \in A$, x does not belong to the closed set $\overline{X \setminus E}$. So there is some ball $B_{\varepsilon}(x)$ disjoint from $\overline{X \setminus E}$. It implies this ball is contained in E, in other words, $x \in E^{\circ}$. We have shown $A \subset E^{\circ}$. On the other hand, if $x \in E^{\circ}$, there is a ball $B_r(x)$ completely contained inside E. So it is disjoint from $\overline{X \setminus E}$, that is, $x \in A$. We have shown that $E^{\circ} \subset A$.